การแก้โจทย์ลอการิทึม

  การหาค่า log x เขียน x = A  10n เมื่อ 1 < A < 10 หาค่าของ log A จากตาราง แล้วจะได้
log x = n + log A

ตัวอย่าง log 5710

= log (5.71  103)
= 3 + log 5.71
= 3 + 0.7566 = 3.7566

     การหาค่า x เมื่อทราบค่า  log x เช่น log x = 7.8341 ค่า x ทำได้โดยการใช้เครื่องคิดเลขและการเปิดตาราง
1. เขียน log x = n + B เมื่อ 0 < B < 1 และ n เป็นจำนวนเต็ม
2. หาค่า y เมื่อ log y = B จากตารางแอนติลอการิทึมหรือตารางลอการิทึม (โดยดูย้อนกลับ) ได้ค่า y
แล้วจะได้ x = y 
 10n

    การแก้สมการลอการิทึม การแก้สมการลอการิทึมมีรูปแบบที่พบกันบ่อยๆอยู่ 4 วิธี คือ
1. แยกตัวประกอบ เช่น (log 4 x)3-(log 4 x)2 – 2log 4 x = log 4 x (log 4 x – 2)( log 4 x + 1 ) = 0
2. เปลี่ยนรูป y = logax เป็น x = ay
3. ทำให้เป็นลอการิทึมฐานเดียวกันมีค่าเท่ากันคือทำให้ log a u = log a v แล้วสรุปว่า u = v
4. แปลงรูปสมการโดยใช้สมบัติของลอการิทึม

    การแก้อสมการลอการิทึม อสมการลอการิทึมสามารถแก้ได้โดยใช้สมบัติต่อไปนี้คือ
1. กรณีที่ a > 0 จะได้ว่า logau > loga v ก็ต่อเมื่อ u > v
2. กรณีที่ 0 < a < 1 จะได้ว่า loga u > loga v ก็ต่อเมื่อ u < v
3. แปลงอสมการลอการิทึมให้อยู่ในรูปอสมการเอกซ์โพเนนเชียล เช่น
log3( x + 2 ) < 4 = x + 2 < 34

ใส่ความเห็น

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / เปลี่ยนแปลง )

Twitter picture

You are commenting using your Twitter account. Log Out / เปลี่ยนแปลง )

Facebook photo

You are commenting using your Facebook account. Log Out / เปลี่ยนแปลง )

Google+ photo

You are commenting using your Google+ account. Log Out / เปลี่ยนแปลง )

Connecting to %s

%d bloggers like this: